Enzymatically Degradable Mussel-Inspired Adhesive Hydrogel
نویسندگان
چکیده
Mussel-inspired adhesive hydrogels represent innovative candidate medical sealants or glues. In the present work, we describe an enzyme-degradable mussel-inspired adhesive hydrogel formulation, achieved by incorporating minimal elastase substrate peptide Ala-Ala into the branched poly(ethylene glycol) (PEG) macromonomer structure. The system takes advantage of neutrophil elastase expression upregulation and secretion from neutrophils upon recruitment to wounded or inflamed tissue. By integrating adhesive degradation behaviors that respond to cellular cues, we expand the functional range of our mussel-inspired adhesive hydrogel platforms. Rapid (<1 min) and simultaneous gelation and adhesion of the proteolytically active, catechol-terminated precursor macromonomer was achieved by addition of sodium periodate oxidant. Rheological analysis and equilibrium swelling studies demonstrated that the hydrogel is appropriate for soft tissue-contacting applications. Notably, hydrogel storage modulus (G') achieved values on the order of 10 kPa, and strain at failure exceeded 200% strain. Lap shear testing confirmed the material's adhesive behavior (shear strength: 30.4 ± 3.39 kPa). Although adhesive hydrogel degradation was not observed during short-term (27 h) in vitro treatment with neutrophil elastase, in vivo degradation proceeded over several months following dorsal subcutaneous implantation in mice. This work represents the first example of an enzymatically degradable mussel-inspired adhesive and expands the potential biomedical applications of this family of materials.
منابع مشابه
Cell migration through defined, synthetic ECM analogs.
We have developed synthetic hydrogel extracellular matrix (ECM) analogues that can be used to study mechanisms involved in cell migration, such as receptor-ligand interactions and proteolysis. The biomimetic hydrogels consist of bioinert polyethylene glycol diacrylate derivatives with proteolytically degradable peptide sequences included in the backbone of the polymer and adhesive peptide seque...
متن کاملHydrolytically degradable hyaluronic acid hydrogels with controlled temporal structures.
Polysaccharides are being processed into biomaterials for numerous biological applications due to their native source in numerous tissues and biological functions. For instance, hyaluronic acid (HA) is found abundantly in the body, interacts with cells through surface receptors, and can regulate cellular behavior (e.g., proliferation, migration). HA was previously modified with reactive groups ...
متن کاملBiomedical and Clinical Importance of Mussel-Inspired Polymers and Materials
The substance secreted by mussels, also known as nature's glue, is a type of liquid protein that hardens rapidly into a solid water-resistant adhesive material. While in seawater or saline conditions, mussels can adhere to all types of surfaces, sustaining its bonds via mussel adhesive proteins (MAPs), a group of proteins containing 3,4-dihydroxyphenylalanine (DOPA) and catecholic amino acid. S...
متن کاملAdhesion properties of catechol-based biodegradable amino acid-based poly(ester urea) copolymers inspired from mussel proteins.
Amino acid-based poly(ester urea) (PEU) copolymers functionalized with pendant catechol groups that address the need for strongly adhesive yet degradable biomaterials have been developed. Lap-shear tests with aluminum adherends demonstrated that these polymers have lap-shear adhesion strengths near 1 MPa. An increase in lap-shear adhesive strength to 2.4 MPa was achieved upon the addition of an...
متن کاملBoronate Complex Formation with Dopa Containing Mussel Adhesive Protein Retards pH-Induced Oxidation and Enables Adhesion to Mica
The biochemistry of mussel adhesion has inspired the design of surface primers, adhesives, coatings and gels for technological applications. These mussel-inspired systems often focus on incorporating the amino acid 3,4-dihydroxyphenyl-L-alanine (Dopa) or a catecholic analog into a polymer. Unfortunately, effective use of Dopa is compromised by its susceptibility to auto-oxidation at neutral pH....
متن کامل